
Single Channel Source Separation Using Sparse NMF and  

Graph Regularization 
Tuan Phama1, Yuan-Shan Leea2, Yan-Bo Lina3, Tzu-Chiang Taib4, and Jia-Ching Wanga5 

a
Dept. of Computer Science and Information Engineering, National Central University,Taiwan 

b
Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan 

{
 1
103582605, 

2
102582003, 

3
102502529}@cc.ncu.edu.tw,  

4
tctai@pu.edu.tw, 

5
jcw@csie.ncu.edu.tw

 

ABSTRACT 
The aim of single channel source separation is to accurately recover 
signals from mixtures. In supervised case, non-negative matrix 
factorization (NMF) is a popular method to separate mixed signals 
from learned dictionaries. These dictionaries can be produced 
efficiently by sparse NMF to approximate the input signal as closely 
as possible. However, previous methods neither consider the 
structure of the data in terms of the similarity between vertices of the 
input signal nor use state-of-art variants of NMF that are more 
efficient than conventional ones. This paper presents a method that 
incorporate graph regularization constraint into a group sparsity NMF 
to improve the performance of source separation. Experimental 
results demonstrate that our method is outstandingly effective for 
speech separation in two representative scenarios. 

CCS Concepts 
• Computing methodologies➝Machine learning➝Unsupervised 
learning➝Source separation. 

Keywords 
Graph regularization; non-negative matrix factorization; sparse 
coding; source separation. 

1. INTRODUCTION 
As technology keeps improving in the modern world, human-
computer interaction becomes an essential part in our daily life. The 
speech-based human-computer interface has been gaining increasing 
interests owing to its accessible, natural, and easy-to-use properties. 
The interface should provide automatic machine perception of 
auditory scenes in un-controlled environments. One of the important 
topics is to develop a speech recognition system capable of 
performing source separation of the target speech in the presence of 
multiple competing sound sources in natural environments. 
Therefore, this paper proposes a sparse non-negative matrix 
factorization (NMF) based source separation method. 

Source separation has been a popular topic of research in the last few 
decades. It has various potential applications in speech signal 
processing such as hearing aids, automatic speech recognition and 

speech coding. A single-channel source separation (SCSS) system is 
a classical issue in auditory scene analysis. In particular, SCSS is 
used in the case that only one microphone is available, aims to 
extracting specific speakers’ signals from a single mixed signal. 

In recent years, numerous SCSS approaches have been extensively 
proposed and most fall into two groups: model-based [20, 23, 24] and 
data-driven [2, 4, 18]. Model-based SCSS attempt to find an efficient 
model of NMF and dictionary learning to separate mixture signals or 
enhance a target speaker. However, data-driven methods typically 
seek discriminative features of mixture signal or use priori 
information to separate the source signals. Generally, source 
separation problems can be solved based on numerous approaches in 
which NMF is used to construct a dictionary learning and to estimate 
a specific speaker from mixed speech signals. 

In single-channel BSS, signals from several unknown sources are 
usually mixed. Mathematically, mixed speech can be treated as a 
mixture of N unknown source signals, 

  1 2( ) ( ) ( ) ... ( )Nx t s t s t s t                  (1) 

where t  represents time. 

Source separation estimates the sources ( )ns t , n N   of length T 
when from only the mixed signal ( )x t . Without loss of generality, 
experiments are carried out herein to test the proposed approach on a 
mixture of two male and female speech signals. Many methods based 
on NMF have been developed to solve this problem in unsupervised, 
semi-supervised or supervised fashion. In the unsupervised case, the 
separation is conducted by finding a decomposition in which the 
sources are assumed to be statistically independent. In the semi-
supervised case, either speech or the noise dictionary is missing. The 
missing dictionary is derived in the separation phase. In the 
supervised case, both speech and noise are known and these signals 
can be utilized to approximate the speech data. Additionally, these 
dictionaries are learned from a training process and generally fixed in 
the separation phase. 

NMF [1] has many applications, such as audio separation [13, 19, 17, 
20, 22, 24], speech enhancement [2, 9], image processing [15], or 
document clustering [25, 26]. NMF factorizes an original matrix as 
the product of a basis vector matrix and a coefficient matrix whose 
elements are all non-negative. In NMF-based blind source separation 
(BSS), the dictionary matrix is generated using clean speech or noise. 
The activation matrix is usually a sparse matrix, meaning that most of 
its elements are zero [5, 6, 9]. Many variants of NMF have been 
developed based on the work of Lee and Seung [1] with additional 
constraints, such as the sparse constraint that penalizes non-sparse 
vectors [2, 4, 5, 9, 17], and temporal continuity. Recently, sparse 
NMF with β-divergence [3, 4, 13] has been utilized to improve 
efficiently performance of speech separation. However, this approach 
neglects the structure of the data (the relationship between vertices of 
a graph).  
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Figure 1. The block diagram of proposed method.

Source separation has been a popular topic of research in the several 
decades. To solve this problem, a sparseness constraint or a log/l1 
penalty has been utilized to make the coefficient vector [2, 5, 6]. 
Some literature has considered the structure of speech data [2, 7]. 

These methods add constraints to the original NMF, such as a 
sparsity constraint to penalize vectors that are not sparse or to 
measure similarity between a cluster centroid and a basic vector. 
Another relevant work, mixture local dictionary [2] was introduced 
to estimate distance between centroid of each local dictionary and 
dictionary matrix. Each local dictionary, which can be learned 
beforehand by using clustering techniques, is considered as a priori 
knowledge of dictionary matrix. 
 
Another method involves model-based source separation, in which 
used NMF to incorporate a deep neural network (DNN) [20] into 
NMF. Source separation base on collaboration of NMF and deep 
neural network comprises three phases: NMF training, DNN training 
and speech separation phases. In the NMF training phases, 
conventional NMF is utilized to produce basis matrix for each 
source. To reconstruction each source form mixture, optimal 
encoding vector (activation vector), which was traditionally 
produced by using NMF, must be estimated. However, [20] used a 
deep neural network to estimate the encoding vectors faithfully 
reconstruct the desired source data vectors. This framework can be 
enhanced by including sparse coding and graph regularization to 
produce better dictionary in the first step. These past approaches 
focus majorly on adding constraint or incorporating other modern 
techniques; however, the structure of the data was not considered.  

Lastly, another relevant work [27] used graph regularized sparse 
coding and NMF in image presentation. The important contribution 
of our work is to use β-divergence NMF, group sparsity and graph 
regularization to improve upon sparse NMF (SNMF) by imposing 
graph regularization [10, 15], which represents the closeness of 
speech samples, and using group sparsity instead of l1-norm. This 
paper is extension work of [19] with advanced algorithm, more 
experiments on two datasets and more scenarios.  Figure 1 shows the 
block diagram of proposed method, including source-specific 
dictionary learning [18] and activation matrix that corresponds to 
learned dictionaries. Experiments in two representative scenarios 
reveal that the proposed algorithm is outstandingly effective in 
speech separation. 

The rest of this paper is organized as follows. Section 2 presents the 
proposed model and its related algorithms. Section 3 presents 
experimental results concerning speech separation. Finally, Section 
4 draws conclusions. 

2. SOURCE SEPARATION USING SPARSE 
NMF WITH BETA-DIVERGENCE AND 
GRAPH REGULARIZATION 
This section briefly reviews the sparse NMF with β-divergence and 
then develops the proposed group sparsity NMF with β-divergence 
and graph regularization in source separation. 

2.1 Sparse NMF with β-divergence 
Given a non-negative dimensional data matrix m n

signal


V  . NMF 

proposed by [1] aims to decompose original matrix into basis and 

coefficient matrix. To estimate m kW m k
 and k nH m k

 , an 

objective function |( )D V WH was used to estimate reconstruction 

error and it is iteratively minimized through a multiplicative update 
rule,  
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( , ) argmin a (rgmin | )F D 
W H W H

W H V WH                     (2) 

   To generalize reconstruction metric, β-divergence introduced by 
[3] has been proved that it can produce better separation 
performance [6, 16] and the β-divergence [3] is defined as follows, 
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In β-divergence, β = 0 yields the Itakura-Saito (IS) distance [16]; β = 
1 yields the generalized Kullback-Leibler (KL) divergence, and β = 
2 yields the Euclidean distance. In particular, the cost function to be 
minimized is, 

1
, ,

( , ) argmin argm (in | )F D   
W H W H

W H V WH H‖ ‖       (4) 

where the first term denotes NMF with β-divergence [3] and the 
second term is an sparse constraint which aims to enhance quality of 
produced dictionary. The multiplicative update rules are widely used 
to minimize (4) because of their simplicity and efficiency.  The 
multiplicative update rules that preserve the non-negativity of H and 
W are given by, 
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where the matrix Λ = WH , and W is the column-wise normalized 

version of W Operation  is element-wise multiplication, and the 
division operation is also carried out in an element-wise fashion. 

2.2 Sparse NMF with β-divergence and Graph 
Regularization 
According to manifold learning theory [10], the geometric structure 
of input data can be efficiently modeled by graph regularization. A 
weight matrix U, used to measure the closeness of two points, can be 
constructed for n nearest neighbors. Given a graph with N vertices, 
each of which corresponds to a data point xi and Nn  The 
Laplacian Eigenmap algorithm typically has two steps. The first step 
is the construction of a graph from input samples, and the second 
step is the definition of the weight matrix U. Nodes i and j are 
connected by an edge if i is among n nearest neighbors of j or j is 
among n nearest neighbors of i. There are two variations to obtain 
weighted edges in U [10]. The first variation is heat kernel was 
estimated by (7) if nodes i and j are connected, 

            ij =U

2

i j-
-

te

x x

                            (7) 

where parameter t  . 

Another simplification of weighting U is simple-minded without 
parameter t .  Uij  = 1 if and only if vertices i and j are connected by 
an edge,  

                  
1

0
ij =





U                                       (8) 

A graph Laplacian matrix is then calculated as, 

L=D U                                              (9) 

where D is a diagonal matrix whose entries are column sums of U. 
Finally, the graph regularization term is given by, 
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The objective function in the proposed method is defined as (11), 

s
,

argmin ) ( )(β |D μ αTr T

W H

V WH + (H ) + HLH         (11) 

where the first terms represent NMF with β-divergence, the second 
term is block-sparsity-inducing which used in our approach instead 
of l1-norm, and the third term is the graph regularization term. The 
terms α and µ control the degree of regularization. Additionally, we 
have several choices of Ω which relate to monotonicity, 
convergence or complex of multiplicative update rule [17].    

 

 

 

Table 1.  List of common group sparsity 

Penalty ( )s H  

l1/l∞ 1

M

gg 
 H  

l1/l2 1 2

M

gg H  

log/l1 1 1
log( )

M

gg



 H  

 

In particular, log/l1 penalty is suggested in [2, 6, 17] because of its 
monotonicity and induced multiplicative updates. The equation of 
second term is described below, 

         
1 1

( ) log( )
M

s gg
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
  H H                    (12) 

where g is group index 

The objective function (11) can also be minimized by applying 
multiplicative update rules. The obtained multiplicative update rules 
in the proposed algorithm are given by (13), (14) and (15), 
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2.3 Source Separation Using Sparse NMF with 
β-divergence and Graph Regularization 
The short-time Fourier transform (STFT) is used to generate the 

spectrogram of a signal. Taking the magnitude of each time-

frequency point in a spectrogram yields a non-negative matrix. Let 

,m n
mix


V   1

m n
source


V  , and 2

m n
source


V   denote the non-

negative matrixes corresponding to the mixed signal and two source 

signals, respectively. In the training mode, the proposed method 

finds the dictionary matrix source1W and 2sourceW that corresponds to 

the source signals. Here W and H are initialized to random numbers 

and both are updated to approximate the original signal through the 

iterations. The separation stage can be segmented into unsupervised 

mode, supervised mode and semi-supervised mode, respectively. 

Algorithm 1 describes the proposed speech separation method. 

In the unsupervised mode, separation of the unknown source signals 
is done by learning the activations of the corresponding dictionaries 
in training mode. The activation matrix is estimated by applying 
(14). On the other hand, learned dictionaries must be fixed if all 
sources are known. This case is called the supervised mode in which 

the dictionary dicW  is: 

 2dic source1 source= ,W W W                        (16) 

 

 



Algorithm 1 Speech separation using sparse NMF and graph 
regularization for training and testing 

Input: m n
mix


V  , 1

m n
source


V  , and 2

m n
source


V   (In the training 

mode, the inputs are 1sourceV  and 2sourceV . Otherwise, the input is 

m ixV ) 

Output: W or H (In the training mode, the output is dictionary W. 
Otherwise, the output is H ) 

1: Initialize missing matrix W or H to a random number 

2: Construct matrix U using (7) or (8) and derive matrix D and L 
using U and (9) 

3: repeat 

4:    Update H using (14),  and  hg using (15) 

5:    if training mode 

6:        Update W using (13) 

7:    end if 

8:    Obj_cost = error sparse NMF + error sparsity + laplacian 

9: until Convergence  

 

In the semi-supervised case, one source is known. If the source1 is 
available and the source2 is unknown, then the learned dictionary of 
source1 is fixed and the dictionary of source2 is updated using (13). 

Finally, source signals are recovered using the soft mask as follows 
[17]: 

   
   

source1 mix source1 source1 dic mix

source2 mix source2 source2 dic mix

= /
= /




V V W H W H
V V W H W H

            (17) 

where  1 2

T

mix source sourceH H  H , operation  is element-wise 

multiplication, and the division is also carried out in the element-
wise operation. 

3. EXPERIMENTAL RESULT 
The experimental results that were obtained using the proposed 
algorithm, sparse NMF [4], and sparse-coding-based NMF (SC-
NMF) [9, 13] were compared. All speech signals that were used in 
the experiments were obtained from two datasets, GRID [21] and 
TIMIT [11], with a sampling rate of 16 kHz. A subset of speakers 
(eight female and eight male) were chosen at random from the 
TIMIT dataset. From GRID dataset, two female and two male 
speakers were selected randomly. Eighty randomly chosen 
utterances by each speaker were used for training and 20 from each 
speaker were used for testing. The BSS Eval toolbox [12] was 
utilized to evaluate the quality of the separated signals in terms of 
signal-to-distortion (SDR), signal-to-interference ratio (SIR), and 
signal-to-artifacts ratio (SAR). SDR measures the overall quality of 
the separated speech while SIR and SAR are proportional to the 
degree of noise reduction and the inverse of speech distortion, 
respectively. 

The same setting was utilized in the proposed algorithm and the 
baseline systems. For the proposed algorithm and the baseline 
systems, the following parameters were set; number of iterations = 
400,  = 0.1 and   = 5, β = 0, M=20 and base number K = 1024. 

The sparse coding and NMF were implemented according to [13]. 

The base number K = 50 is set for these two systems and the result 
became worse as K was increased. In addition, as   and  → ∞, 

worse results are obtained. 

The experiments involved in two scenarios. In the first scenario, 
signals from each speaker were used in both training and testing. 
This scenario is used for the particular environment in which a priori 
information is available. For each speaker, a local dictionary was 
constructed. Therefore, a total of sixteen local dictionaries W = [W1, 
W2,…,W16] were constructed.  

 

Table 2. Source separation performance using eight male and 
eight female speakers for training (TIMIT dataset) 

Measure SC-NMF Sparse NMF Proposed 

SDR 4.98 8.69 8.95 

SIR 6.77 13.19 13.88 

SAR 10.77 11.41 11.19 

 

Table 3. Source separation performance using two male and two 
female speakers for training (GRID dataset) 

Measure SC-NMF Sparse NMF  Proposed 

SDR 5.05 7.22 7.48 

SIR 5.33 12.36 13.19 

SAR 11.88 9.49 9.37 

 

Tables 2 and 3 present the experimental results on TIMIT and GRID 
dataset respectively. According to Table 2 and 3, both the proposed 
algorithm and sparse NMF performed significantly better than the 
SC-NMF. The proposed algorithm yielded higher values than the 
sparse NMF for both SIR and SDR, but a slightly worse SAR. The 
most widely used evaluation measure is SIR and SDR.  

In the second scenario, the speaker identities used in training differ 
from those used in testing. This scenario reflects the real 
environment in which the priori information is usually unavailable 
and only a dictionary trained by other speakers can be used. In this 
scenario, the speech from one female and one male speaker was 
used to generate a dictionary W = [W1, W2]. Mixed sentences 
spoken by other speakers were generated for testing. Table 4 and 5 
presents the experimentally obtained average results. The proposed 
algorithm outperforms both SC-NMF and sparse NMF from TIMIT 
dataset. From GRID dataset, the performance of our algorithm is 
slightly better than baselines because structure of GRID dataset is 
more suitable for speaker-specific than multi-speaker separation. 

Table 4. Source separation performance using one male and one 
female speaker for training (TIMIT dataset) 

Measure SC-NMF Sparse NMF Proposed 

SDR 3.42 6.52 7.08 

SIR 5.40 9.32 10.41 

SAR 9.03 10.80 10.61 

 

 



Table 5. Source separation performance using one male and one 
female speaker for training (GRID dataset) 

Measure SC-NMF Sparse NMF Proposed 

SDR 4.42 6.54 6.52 

SIR 4.57 10.37 10.68 

SAR 10.78 8.37 8.19 

 

Figures 2 and 3 compare sparse NMF with our proposed algorithm 
in term of β-divergence. The relevant experiments were conducted 
on two scenarios, using all available training speakers and using 
only one male and female speakers, from TIMIT dataset. From Fig. 
2, the performance of proposed approach outperforms by SDR, SIR 
but not SAR. General characteristics of proposed algorithm and 
sparse NMF are loss of stability of source separation that lead to 
decrease quality of output signals when β ≥ 2. Both algorithms 
perform best when β = 0 and performance worsens as β approaches 
2. When β is between 0 and 1.8, the two major evaluation metrics 
exceed the baseline for the proposed algorithm. In particular, when β 
= 2, all of three metrics dropped dramatically and convergence rate 
is rapid. 

 

 

 

Figure 2. β-divergence study using all of available dictionary  

 

Figure 3 shows β-divergence study of speech separation using one 
random-dictionary. In this experiment, our proposed algorithm is 
remarkable when β = 0, SDR and SIR metric of our method is 
significantly higher than baseline. Generally, SAR is less vulnerable 
than SDR and SIR by the value of beta. When β is form 1.8 to 2, all 
of three metrics also reduce intensely. Lastly, our line graph is above 
baseline on the most of β value.  

 

 

 

Figure 3. β-divergence study using one random-dictionary  

 

Figure 4 shows the mixed signal and the separated sources using all 
of dictionaries and sparse NMF β-divergence with graph 
regularization. Visually, it can be seen that the mixture has been 
separated efficiently comparing with the original sources. 
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 Figure 4. Two original sources, observed mixture and two 
separated sources. 

4. CONCLUSIONS 
This work proposed source separation method using group sparsity 
NMF with β-divergence and graph regularization. The proposed 
method is an extension of the state-of-art group sparsity NMF with 
β-divergence, which imposes graph regularization to take into 
account the structure of signals. The experimental results 
demonstrate that the proposed algorithm improves the overall 
quality of the separated speeches above that in previous studies. Our 
future work will extend the proposed algorithm by taking into 
account the correlation of training and testing phases i.e. objective 
function of separation process will include objective function of 
training (bi-level optimization). Other techniques, such as DNN or 
probabilistic latent component analysis (PLCA), can be incorporated 
into our framework. Accordingly, the problem of speech separation 
can be solved using group sparsity NMF with β-divergence and 
underlying manifold of input data. 
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